Congruences Defined by Languages and Filters

Helmut Prodinger

Institut für Mathematische Logik und Formale Sprachen, TU Wien, Gusshausstrasse 27–29, A-1040, Wien, Austria

The usual right congruence \sim_L can be generalized in the following manner: $x \sim_{\mathscr{G},L} y :\Leftrightarrow \{z \mid xz \in L \Leftrightarrow yz \in L\} \in \mathscr{G}$, where \mathscr{L} is a family of languages. It turns out to be useful when \mathscr{L} is a filter with an additional property. Furthermore semifilters are introduced and studied. It is also possible to define congruences by filters. Assuming the (right) congruences to have finite index yields a generalization of the regular sets.

1. INTRODUCTION AND PRELIMINARIES

The well-known mathematical concept *filter* has been already used in the theory of formal languages (Benda, Bendová, 1976). The same will be done here, but the point of view is another one: Let $L \subseteq \Sigma^*$ and let $\mathscr{L} \subseteq \mathfrak{P}(\Sigma^*)$ be a filter with a certain division property (see below). Then by

$$x \sim_{\mathscr{L}, L} y :\Leftrightarrow \{z \mid xz \in L \Leftrightarrow yz \in L\} \in \mathscr{L}$$

a right congruence is defined, which reduces to the well-known right congruence \sim_L of the theory of formal languages by taking $\mathscr{L} = \{\Sigma^*\}$.

A similar concept is used in model theory. (See Bell, Machover (1977, p. 174 ff.).)

With respect to the use of systems $\mathscr{L} \subseteq \mathfrak{P}(\Sigma^*)$ in the theory of formal languages compare also (Prodinger, Urbanek, 1979) and (Prodinger, 1979).

In Section 2 necessary and sufficient conditions for a family \mathscr{L} are presented to define a right congruence; appropriate definitions will be given.

In Section 3 the concepts introduced in Section 2 are investigated in detail.

In Section 4 the considerations are extended to the case of congruences.

In Section 5 some generalizations of the family of the regular sets are introduced and closure properties of these families are investigated.

In Section 6 some remarks are made concerning probably the most interesting special case (i.e., if \mathscr{L} is the family of cofinite sets).

Now the essential definitions are given: Σ^* denotes the free monoid generated by Σ with unit ϵ , $\Sigma^+ = \Sigma^* - \{\epsilon\}$. \triangle denotes the symmetrical difference of two sets; $A \circ B := (A \triangle B)^e$. $w \setminus L = \{z \mid wz \in L\}$ and $L/w = \{z \mid zw \in L\}$. For a formal language L let

$$G_L(x, y) := \{z \mid xz \in L \Leftrightarrow yz \in L\} = (x \setminus L) \circ (y \setminus L).$$

The right congruence \sim_L is defined by

$$x \sim_L y :\Leftrightarrow G_L(x, y) = \Sigma^*$$

Finite automata are written as quintuples $(Q, \Sigma, \delta, q_0, F)$. If no final states are considered it will be written (Q, Σ, δ, q_0) . The termini state and class are used synonymously. (The state q corresponds to the class $\{w \in \Sigma^* \mid \delta(q_0, w) = q\}$.)

If there is said nothing else, it is assumed that an arbitrary but fixed alphabet Σ is given.

It is to be remarked that this paper allows a family \mathscr{L} to be empty.

Concepts of the theory of formal languages not especially described can be found in (Eilenberg, 1974).

2. RIGHT CONGRUENCES AND FILTERS

DEFINITION 2.1. A family of languages $\mathscr{L} \subseteq \mathfrak{P}(\mathscr{Z}^*)$ is called a *filter with division property* (FD), if the following axioms are valid:

(FD1) $\mathscr{L} \neq \varnothing$

(FD2) $A, B \in \mathscr{L} \Rightarrow A \cap B \in \mathscr{L}$

- (FD3) $A \in \mathscr{L}, A \subseteq B \Rightarrow B \in \mathscr{L}$
- (FD4) $A \in \mathscr{L}, z \in \Sigma^* \Rightarrow z \setminus A \in \mathscr{L}.$

DEFINITION 2.2. A family of languages $\mathscr{L} \subseteq \mathfrak{P}(\mathcal{Z}^*)$ is called a *semifilter* with division property (SFD), if the following axioms are valid:

 $\begin{array}{ll} \text{(SFD1)} & \mathcal{D}^* \in \mathscr{L} \\ \text{(SFD2)} & A, B \in \mathscr{L} \Rightarrow A \circ B \in \mathscr{L} \\ \text{(SFD3)} & A \in \mathscr{L}, \ z \in \mathcal{D}^* \Rightarrow z \backslash A \in \mathscr{L}. \end{array}$

Each FD is also an SFD: (SFD1) follows from (FD1) and (FD3); (SFD2) follows from (FD2) and (FD3) if $A \circ B = (A \cap B) \cup (A \cup B)^c$ is taken in account.

DEFINITION 2.3. $x \sim_{\mathscr{L},L} y :\Leftrightarrow G_L(x, y) \in \mathscr{L}$.

THEOREM 2.4. If \mathscr{L} is an SFD then $\sim_{\mathscr{L},L}$ is a right congruence.

Proof. The reflexivity follows from (SFD1). The symmetry is clear. The transitivity can be seen as follows:

$$egin{aligned} G_L(x,\,z) &= (x ackslash L) \circ (z ackslash L) = (x ackslash L) \circ \Sigma^* \circ (z ackslash L) \ &= (x ackslash L) \circ (y ackslash L) \circ (y ackslash L) \circ (z ackslash L) = G_L(x,\,y) \circ G_L(y,\,z), \end{aligned}$$

and hence (SFD2) can be used.

Now assume $x \sim_{\mathscr{L},L} y$ and $z \in \Sigma^*$, i.e., $G_L(x, y) = (x \setminus L) \circ (y \setminus L) \in \mathscr{L}$. By (SFD3) $z \setminus [(x \setminus L) \circ (y \setminus L)] = (z \setminus (x \setminus L)) \circ (z \setminus (y \setminus L)) = (xz \setminus L) \circ (yz \setminus L) = G_L(xz, yz) \in \mathscr{L}$. Hence $xz \sim_{\mathscr{L},L} yz$.

(The rules for \circ , which are used here will be treated in the next section.) The next theorem can be seen as a conversion of Theorem 2.4:

THEOREM 2.5. If $|\Sigma| \ge 2$ and $\sim_{\mathcal{L},L}$ is a right congruence for all L, then \mathcal{L} is an SFD.

Proof. First the following will be shown: Let A, B be given. Then x, y, z, L can be found, such that

$$(x|L) \circ (y|L) = A$$
 and $(y|L) \circ (z|L) = B$.

Let $x = a, y = \epsilon, z = b$. The language L is recursively defined by:

$$\begin{split} \epsilon \notin L, \\ \sigma \in \varSigma - \{a, b\}, \ w \in \varSigma^* \Rightarrow \sigma w \notin L \\ aw \in L :\Leftrightarrow [w \in A \Leftrightarrow w \in L] \\ bw \in L :\Leftrightarrow [w \in B \Leftrightarrow w \in L]. \end{split}$$

It is not hard to verify the desired properties.

If (SFD1) does not hold, reflexivity is missing.

If (SFD2) does not hold, i.e., $A, B \in \mathscr{L}$ and $A \circ B \notin \mathscr{L}$, define x, y, z, L as above. Then $x \sim_{\mathscr{L},L} y, y \sim_{\mathscr{L},L} z$ but not $x \sim_{\mathscr{L},L} z$.

If (SFD3) does not hold then A, z exist, such that $A \in \mathcal{L}$, $z \setminus A \notin \mathcal{L}$. Define x, y, L such that $(x \setminus L) \circ (y \setminus L) = A$. Consequently $x \sim_{\mathscr{L},L} y$ but not $xz \sim_{\mathscr{L},L} yz$.

It seems to be of a certain interest to take in consideration filters in this context though the filter axioms are stronger than it is necessary; filters are a convenient concept.

Similar to the proof of Theorem 2.4 is the demonstration of

THEOREM 2.6. If \mathscr{L} is an SFD then by

$$A \sim_{\mathscr{L}} B :\Leftrightarrow A \circ B \in \mathscr{L}$$

an equivalence relation is defined.

Proof. For sake of clarity it will be shown that $A \sim_{\mathscr{L}} B$, $B \sim_{\mathscr{L}} C$ implies $A \sim_{\mathscr{L}} C$.

By the assumptions $A \circ B \in \mathscr{L}$, $B \circ C \in \mathscr{L}$ hold. Hence by (SFD2) $(A \circ B) \circ (B \circ C) = A \circ (B \circ B) \circ C = A \circ \Sigma^* \circ C = A \circ C \in \mathscr{L}$, i.e., $A \sim_{\mathscr{L}} B$.

THEOREM 2.7. Let be \mathscr{L} an SFD. If $A \sim_{\mathscr{L}} B$ then

 $\sim_{\mathscr{L},A} = \sim_{\mathscr{L},B}$.

Proof. By symmetry it is sufficient to show that $x \sim_{\mathscr{L},A} y$ implies that $x \sim_{\mathscr{L},B} y$.

From $A \circ B \in \mathscr{L}$ follows

$$x \setminus (A \circ B) = (x \setminus A) \circ (x \setminus B) \in \mathscr{L}.$$

By the assumption $(x \setminus A) \circ (y \setminus A) \in \mathscr{L}$. Thus

$$(x \setminus B) \circ (x \setminus A) \circ (x \setminus A) \circ (y \setminus A) = (x \setminus B) \circ \varSigma^* \circ (y \setminus A) = (x \setminus B) \circ (y \setminus A) \in \mathscr{L}$$

A similiar argumentation gives

$$y \setminus (A \circ B) = (y \setminus A) \circ (y \setminus B) \in \mathscr{L},$$

and therefore

$$(x \setminus B) \circ (y \setminus A) \circ (y \setminus A) \circ (y \setminus B) = (x \setminus B) \circ (y \setminus B) \in \mathscr{L}.$$

(See the next section concerning the rules for \circ .)

3. PROPERTIES OF FD'S AND SFD'S

Defining SFD's it is sufficient to substitute (SFD1) by the weaker one

(SFD1') $\mathscr{L} \neq \emptyset$,

since from $A \in \mathscr{L}$ follows $A \circ A = \Sigma^* \in \mathscr{L}$.

It is well-known that $(\mathfrak{P}(\Sigma^*), \Delta, \cap)$ forms a ring. The valid laws can be reformulated in terms of \circ :

$A \bigtriangleup arnot = A$,	therefore	$A\circ arnot = A^{\mathfrak{c}}$
$A \bigtriangleup A = \varnothing$,	therefore	$A\circ A=\varSigma^*$
$A riangle A^c = arsigma^*$,	therefore	$A \circ A^c = \varnothing.$

 $(A \bigtriangleup B)^c = A \bigtriangleup B^c$ implies $A \circ B = A \bigtriangleup B^c$. Thus $A \circ \Sigma^* = A \bigtriangleup \emptyset = A$. Hence

$$egin{aligned} A\circ(B\circ C)&=A\circ(Bigtriangle C^{c})=A^{c}igtriangle Bigtriangle C^{c}\ &=(A\circ B)igtriangle C^{c}=(A\circ B)\circ C. \end{aligned}$$

Therefore $(\mathfrak{P}(\Sigma^*), \circ)$ is a group, Σ^* being the unit and each element being self-inverse.

$$(A \circ B) \cup C = [(A \circ B) \cup C]^{cc} = [(A \circ B)^c \cap C^c]^c = [(A riangle B^c)^c \cap C^c]^c = [(A riangle B^c) \cap C^c]^c = [(A^c \cap C^c) riangle (B^c \cap C^c)]^c = [(A \cup C)^c riangle (B \cup C)^c]^c = (A \cup C)^c riangle (B \cup C) = (A \cup C)^c riangle (B \cup C),$$

thus $(\mathfrak{P}(\Sigma^*), \circ, \cup)$ is a ring.

It is evident that $z \setminus (A \circ B) = (z \setminus A) \circ (z \setminus B)$ holds. For fixed z the mapping $A \mapsto z \setminus A$ is an endomorphism of rings.

It is possible to speak of the SFD generated by \mathscr{L} , since $\mathfrak{P}(\Sigma^*)$ is an SFD and arbitrary meets of SFD's are again SFD's.

Now some items to the FD's.

From $\emptyset \in \mathscr{L}$ follows $\mathscr{L} = \mathfrak{P}(\mathcal{Z}^*)$ if \mathscr{L} is a filter. Therefore especially those FD's are of interest for which $\emptyset \in \mathscr{L}$ does not hold; call them *proper*.

Again it is possible to speak of the FD generated by \mathscr{L} , and it is interesting, whether or not it is proper.

EXAMPLE 1. Let be $\mathscr{D} = \{L \mid L^c \text{ is finite}\}, \text{ i.e., } \mathscr{D} \text{ is the family of cofinite languages over } \Sigma$. It is not hard to see that \mathscr{D} is an FD.

If $\Sigma = \{a\}$, it is possible to see a subset of a^* as a 0–1-sequence if one identifies the set with its characteristic function.

As an example, the set $a(aaa)^*$ corresponds to the 0-1-sequence 01001001001

In the sequel k consecutive 1's in a 0-1-sequence are called 1-block of length k.

THEOREM 3.1. Let $\mathscr{L}' \subseteq \mathfrak{P}(a^*)$. If \mathscr{L}' contains an A with the property that only 1-blocks with a length $\leq k$ appear, then the FD \mathscr{L} generated by \mathscr{L}' is not proper.

Proof. Consider $(a \mid A) \cap A$; this set is in \mathscr{L} and contains only 1-blocks with a length $\leq k - 1$. Thus

$$\varnothing = A \cap (a \setminus A) \cap \dots \cap (a^k \setminus A) \in \mathscr{L}.$$

The following theorem is a kind of conversion.

THEOREM 3.2. If A contains arbitrary long 1-blocks, then the FD \mathscr{L} generated by $\{A\}$ is proper.

Proof. It is sufficient to show that it is impossible that sets which are in \mathscr{L} by means of (FD2) and (FD4) are the empty set.

Hence it is sufficient to show that always

$$(a^{i_0} \backslash A) \cap \dots \cap (a^{i_n} \backslash A)
eq arnothing.$$

Thus it is sufficient to verifie that for all n

$$(a^0 \setminus A) \cap \cdots \cap (a^n \setminus A) \neq \varnothing.$$

This is guaranteed by the existence of arbitrary long 1-blocks.

In order to generalize this interpretation as a sequence the following definition is given:

DEFINITION 3.3. $\Omega = \Omega(\Sigma) = \{(\omega_n)_{n=0}^{\infty} \mid \omega_{n+1} = \omega_n \sigma, \sigma \in \Sigma, \omega_0 = \epsilon\}.$ This leads to

EXAMPLE 2. $\mathscr{L} = \{L \mid \liminf_{n \to \infty} | \omega_n \cap L | / (n+1) = 1 \text{ for all } \omega \in \Omega\}$ is a proper FD and $\mathscr{D} \subseteq \mathscr{L}$.

If lim inf is replaced by lim sup the generated FD \mathscr{L} is not proper; let $\Sigma = \{a\}$ and construct A as follows: ($\omega = (0, 1, ...)$)

the *n*-th 1-block is as large as
$$\frac{|A \cap \omega_n|}{n+1} \ge \frac{1}{n}$$
,
the *n*-th 0-block is as large as $\frac{|A \cap \omega_n|}{n+1} \le \frac{1}{n}$,

then A and A^c are in \mathscr{L} , and thus $\varnothing = A \cap A^c \in \mathscr{L}$.

It is impossible to dilate Theorem 3.1 for $|\Sigma| \ge 2$:

THEOREM 3.4. Let be $\mathscr{L}' = \{\Sigma^* - Fa^* \mid F \text{ is a finite set}\}$ and $\mathscr{L} = \{L \mid \text{there is an } L' \in \mathscr{L}' \text{ and } L' \subseteq L\}$. $(a \in \Sigma \text{ fixed.})$

Then \mathcal{L} is a proper FD and there is an $\omega \in \Omega$ such that

$$\limsup_{n \to \infty} \frac{|L \cap \omega_n|}{n+1} = 1 \quad \text{for all} \quad L \in \mathscr{L}$$

does not hold.

Proof. First it is clear that $\Sigma^* - Fa^*$ can never be \emptyset .

It will be shown that for all finite sets F_1 , F_2 there exists a finite set F_3 , such that

$$(\varSigma^* - F_1 a^*) \cap (\varSigma^* - F_2 a^*) \supseteq \varSigma^* - F_3 a^*$$

is valid. This is equivalent to

$$F_1a^* \cup F_2a^* \subseteq F_3a^*.$$

It is sufficient to choose $F_3 = F_1 \cup F_2$.

Now let F_1 be finite and $z \in \Sigma^*$. It will be shown that there exists a finite F_2 such that

$$z\backslash (\varSigma^*-F_1a^*) \supseteq \varSigma^*-F_2a^*$$

holds. This means

or

$$\begin{split} \mathcal{L}^* &- z \backslash (F_1 a^*) \supseteq \mathcal{L}^* - F_2 a^* \\ & z \backslash (F_1 a^*) \subseteq F_2 a^*. \end{split}$$

It is possible to choose $F_2 = (z \setminus F_1) \cup \{\epsilon\}$, since from $w \in z \setminus (F_1 a^*)$ follows that $zw \in F_1 a^*$. The first case is $w = w_1 w_2$ and $zw_1 \in F_1$, thus $w_1 \in z \setminus F_1$; the second one is $z = z_1 a^k$ and $w = a^l$, thus $w \in a^*$.

Let be $\omega = (\epsilon, a, a^2, ...)$ and $L = \Sigma^* - a^* \in \mathscr{L}$. Then

$$\limsup_{n\to\infty}\frac{|\omega_n\cap L|}{n+1}=\limsup_{n\to\infty}0=0.$$

This causes an Example 3.

4. CONGRUENCE RELATIONS AND FILTERS

The syntactic congruence \approx_L (cf. Eilenberg (1974)) can be defined as follows:

$$x \approx_L y :\Leftrightarrow$$
 for all u $ux \in L \Leftrightarrow uy \in L$ and
for all v $xv \in L \Leftrightarrow yv \in L$.

This will be generalized in the sequel.

DEFINITION 4.1. A filter (semifilter) \mathscr{L} is called FD' (SFD') if it fulfills additionally

$$A \in \mathscr{L}, \ z \in \Sigma^* \Rightarrow A | z \in \mathscr{L}.$$

EXAMPLE. \mathscr{D} is an FD'.

DEFINITION 4.2. Let \mathscr{L}_1 be an SFD', \mathscr{L}_2 an SFD:

$$\begin{split} x \approx_{\mathscr{L}_1, \mathscr{L}_2, L} y : \Leftrightarrow \text{ for all } v & \text{ holds } \{u \mid uxv \in L \Leftrightarrow uyv \in L\} \in \mathscr{L}_1 & \text{ and} \\ & \text{ for all } u & \text{ holds } \{u \mid uxv \in L \Leftrightarrow uyv \in L\} \in \mathscr{L}_2 \;. \end{split}$$

THEOREM 4.3. Under the above mentioned assumptions $\approx_{\mathscr{L}_1, \mathscr{L}_2, L}$ is a congruence relation.

Proof. The proof that $\approx_{\mathscr{L}_1,\mathscr{L}_2,L}$ is an equivalence relation corresponds to the proof of Theorem 2.4.

Assume $x \approx_{\mathscr{L}_1, \mathscr{L}_2, L} y$. It must be shown that for arbitrary s, $tsx \approx_{\mathscr{L}_1, \mathscr{L}_2, L} sy$ and $xt \approx_{\mathscr{L}_1, \mathscr{L}_2, L} yt$. By symmetrical argumentations it is sufficient to prove the second part. Let v be arbitrarily chosen. $\{u \mid uxtv \in L \Leftrightarrow uytv \in L\} \in \mathscr{L}_1$, since this holds for all v, especially for tv.

Now let u be arbitrarily chosen. $\{v \mid uxtv \in L \Leftrightarrow uytv \in L\} = t \setminus \{v \mid uxv \in L \Leftrightarrow uyv \in L\} \in \mathscr{L}_2$.

5. A GENERALIZATION OF REGULAR SETS

It is natural to give the following

DEFINITION 5.1. Let \mathscr{L}_1 be an SFD' and let \mathscr{L}_2 be an SFD. Define $\mathscr{R}_{\mathscr{L}_1,\mathscr{L}_2}$ to be the family of all formal languages L, such that $\approx_{\mathscr{L}_1,\mathscr{L}_2,L}$ has a finite index. $\mathscr{R}_{\mathscr{L}_2}$ is the family of all L such that $\sim_{\mathscr{L}_2,L}$ has a finite index.

Obviously the following holds: If $\mathscr{L}_1 \subseteq \widetilde{\mathscr{L}}_1'$, $\mathscr{L}_2 \subseteq \mathscr{L}_2'$ then $\mathscr{R}_{\mathscr{L}_1,\mathscr{L}_2} \subseteq \mathscr{R}_{\mathscr{L}_1',\mathscr{L}_2'}$ and $\mathscr{R}_{\mathscr{L}_2} \subseteq \mathscr{R}_{\mathscr{L}_2'}$.

THEOREM 5.2. $\mathscr{R}_{\mathfrak{P}(\Sigma^*),\mathscr{L}_2} = \mathscr{R}_{\mathscr{L}_2}$.

Proof. The inclusion " \subseteq " is clear.

Now let (Q, Σ, δ, q_0) be the finite automaton without final states corresponding to $\sim_{\mathscr{L}_{n,L}}$. Furthermore let

 $\alpha: \mathcal{L}^* \to Q^{\mathcal{O}} \qquad \text{be defined by} \\ \alpha(w): q \mapsto \delta(q, w).$

The congruence \approx corresponding to the homomorphism α is a refinement of $\sim_{\mathscr{L}_{\alpha L}}$ and has a finite index.

Now assume $w \approx x$, i.e., $\alpha(w) = \alpha(x)$ and let u be an arbitrary element. Then $\alpha(uw) = \alpha(ux)$, i.e., $\delta(q_0, uw) = \delta(q_0, ux)$, thus $uw \sim_{\mathscr{L}_{2},L} ux$, hence $\{v \mid uwv \in L \Leftrightarrow uxv \in L\} \in \mathscr{L}_2$; this means $w \approx_{\mathfrak{P}(\Sigma^*), \mathscr{L}_{2},L} x$. Therefore $\approx_{\mathfrak{P}(\Sigma^*), \mathscr{L}_{2},L}$ has at most as many classes as \approx , i.e., only a finite number of classes.

In the sequel it will be assumed that \mathscr{L}_1 is a FD' and \mathscr{L}_2 is a FD.

LEMMA 5.3. If L is \mathscr{L}_1 , \mathscr{L}_2 -regular then L^c is also \mathscr{L}_1 , \mathscr{L}_2 -regular. Proof. Obvious. LEMMA 5.4. If A, B are \mathscr{L}_1 , \mathscr{L}_2 -regular then $A \cap B$ is also \mathscr{L}_1 , \mathscr{L}_2 -regular.

Proof. Define \approx by $\approx_{\mathscr{L}_1,\mathscr{L}_2,A} \cap \approx_{\mathscr{L}_1,\mathscr{L}_2,B}$. Let $x \approx y$ and u an arbitrary element:

$$(ux \setminus A) \circ (uy \setminus A) \in \mathscr{L}_2$$
 and $(ux \setminus B) \circ (uy \setminus B) \in \mathscr{L}_2$.

Therefore

$$[(ux \backslash A) \circ (uy \backslash A)] \cap [(ux \backslash B) \circ (uy \backslash B)] \in \mathscr{L}_2$$

and this is a subset of

$$(ux | A \cap B) \circ (uy | A \cap B) = [(ux | A) \cap (ux | B)] \circ [(uy | A) \cap (uy | B)],$$

from which follows that the last set is in \mathscr{L}_2 .

Symmetrically one gets for arbitrary v

 $(A \cap B/xv) \circ (A \cap B/yv) \in \mathscr{L}_1.$

Thus $x \approx_{\mathscr{L}_1, \mathscr{L}_2, A \cap B} y$. Therefore $\approx_{\mathscr{L}_1, \mathscr{L}_2, A \cap B}$ has not more classes than \approx ; this yields a finite number of classes.

COROLLARY 5.5. If A, B are \mathcal{L}_1 , \mathcal{L}_2 -regular then $A \cup B$ is also \mathcal{L}_1 , \mathcal{L}_2 -regular.

As a summary can be stated: (\emptyset is \mathscr{L}_1 , \mathscr{L}_2 -regular).

THEOREM 5.6. $\mathcal{R}_{\mathcal{L}_1, \mathcal{L}_2}$ is a boolean algebra.

6. The Case D

The case \mathscr{D} seems to be the most interesting one, therefore some remarks concerning this filter will be presented.

If $\sim_{\mathcal{D},L}$ is of finite index, then it is possible to construct the corresponding finite automaton without final states.

It seems suggestive to believe that the following holds: If suitable final states are chosen, a formal language L', "being simpler as L and similar to L" is obtained. But the following is possible: There are two infinite classes in the minimal automaton of L which coincide with respect to $\sim_{\mathscr{D},L}$. Exactly one of them is a final state; thus in very case $|L' \triangle L| = \infty$. This seems to be not very satisfactory.

It is even possible that this happens considering \approx_L which is a refinement of \sim_L . The two classes coincide with respect to $\approx_{\mathfrak{P}(\Sigma^*), \mathscr{D}, L}$. The language $c^*\{\epsilon, a\} \cup c^*\{aa, ba\} c^*$ yields an example.

Furthermore it is false to believe that it is impossible, that the automaton corresponding to $\sim_{\mathcal{D},L}$ contains finite classes; a counter-example is obtained by taking $L = ab^*$. (Two terminal symbols are necessary!)

To obtain the automaton without final states starting with the minimal automaton for L one can proceed as follows:

Assume $\Sigma = \{\sigma_1, ..., \sigma_n\}$ and let be given the question whether or not the classes x, y coincide with respect to $\sim_{\mathcal{D},L}$. One considers the expression

$$\delta(x,\sigma_1) = \delta(y,\sigma_1) \wedge \cdots \wedge \delta(x,\sigma_n) = \delta(y,\sigma_n)$$

and substitutes distinct x', y' by the analogous expression.

If there appears finally

$$x_1 = x_1 \wedge \cdots \wedge x_s = x_s,$$

the classes coincide, in the other case it happens that after some steps of replacement an expression $\bar{x} = \bar{y}$ will be obtained a second time (a "loop"). Then the classes do not coincide.

A subset $L \subseteq \Sigma^*$ is called *disjunctive* (Shyr, 1977) or *rigid* (Eilenberg, 1976, p. 187) if from $x \approx_L y$ follows x = y.

It is natural to give the following

DEFINITION 6.1. *L* is called \mathscr{L}_1 , \mathscr{L}_2 -disjunctive (\mathscr{L} -disjunctive), if $x \approx_{\mathscr{L}_1, \mathscr{L}_2, L} y$ ($x \sim_{\mathscr{L}, L} y$) implies x = y.

THEOREM 6.2. If a language L is $\{\Sigma^*\}$ -disjunctive it is also \mathcal{D} -disjunctive.

Proof. Let be $x \neq y$ and $a \in \Sigma$. Because $xa \not\sim_L ya$ holds there is a $z \in \Sigma^*$ such that exactly one of the elements xaz, yaz is in L. Thus there is a $z_1 \in \Sigma^+$ such that exactly one of xz_1 , yz_1 is in L. Applying this argumentation to xz_1 , yz_1 one obtains $z_2 \in \Sigma^+$ etc. Finally one gets an infinite set $\{z_1, z_2, ...\}$ such that for all i exactly one of xz_i , yz_i is in L. Thus $x \sim_{\mathcal{D}, L} y$ is impossible.

The results discussed in this paper seem to be only a small part of problems which can be considered in this context. To give only one example the following open question is cited: Does $\Re = \Re_{\mathscr{D}}$ hold?

ACKNOWLEDGMENT

The author thanks the referee for several helpful remarks.

RECEIVED: March 2, 1979; REVISED: September 12, 1979

HELMUT PRODINGER

References

- BELL, J. L., AND MACHOVER, M. (1977), "A Course in Mathematical Logic," North-Holland, Amsterdam/New York/Oxford.
- BENDA, V., AND BENDOVA, K. (1976), Recognizable filters and ideals, Comment. Math Univ. Carolinae 17, No. 2, 251-259.
- EILENBERG, S. (1974), "Automata, Languages and Machines," Vol. A, Academic Press, New York/London.
- EILENBERG, S. (1976), "Automata, Languages and Machines," Vol. B, Academic Press, New York/London.
- PRODINGER, H., AND URBANEK, F. J. (1979), Language operators related to Init, Theoret. Comput. Sci. 8, 161–175.
- PRODINGER, H. (1979), Topologies on free monoids induced by closure operators of a special type, to appear.
- SHYR, H. J. (1977), Disjunctive languages on a free monoid, Inform. Contr. 34, 123-129.